

OPA337 OPA338 OPA2338

For most current data sheet and other product information, visit www.burr-brown.com

MicroSIZE, Single-Supply CMOS OPERATIONAL AMPLIFIERS MicroAmplifier™ Series

FEATURES

- MicroSIZE PACKAGES: SOT-23-5 SOT-23-8
- SINGLE-SUPPLY OPERATION
- RAIL-TO-RAIL OUTPUT SWING
- FET-INPUT: I_R = 10pA max
- HIGH SPEED:

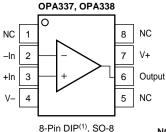
OPA337: 3MHz, 1.2V/ μ s (G = 1) OPA338: 12.5MHz, 4.6V/ μ s (G = 5)

- OPERATION FROM 2.5V to 5.5V
- HIGH OPEN-LOOP GAIN: 120dB
- LOW QUIESCENT CURRENT: 525µA/amp
- SINGLE AND DUAL VERSIONS

APPLICATIONS

- BATTERY-POWERED INSTRUMENTS
- PHOTODIODE PRE-AMPS
- MEDICAL INSTRUMENTS
- TEST EQUIPMENT
- AUDIO SYSTEMS
- DRIVING ADCs
- CONSUMER PRODUCTS

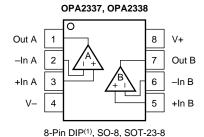
SPICE Model available at www.burr.com


DESCRIPTION

The OPA337 series and OPA338 series rail-to-rail output CMOS operational amplifiers are designed for low cost and miniature applications. Packaged in the new SOT-23-8, the OPA2337EA and OPA2338EA are Burr-Brown's *smallest* dual op amps. At only 1/4 the size of a conventional SO-8 surface mount, they are ideal for space-sensitive applications

Performance is not sacrificed for size. Utilizing advanced CMOS technology, OPA337 and OPA338 op amps provide low bias current, high-speed operation, high open-loop gain, and rail-to-rail output swing. They operate on a single supply with operation as low as 2.5V while drawing only 525µA quiescent current. In addition, the input common-mode voltage range includes ground—ideal for single-supply operations.

The OPA337 series is unity-gain stable. The OPA338 series is optimized for gains greater than or equal to five. They are easy to use and free from phase inversion and overload problems found in some other op amps. Excellent performance is maintained as the amplifiers swing to their specified limits. The dual versions feature completely independent circuitry for lowest crosstalk and freedom from interaction, even when overdriven or overloaded.


The OPA337 packages are the tiny SOT-23-5 surface mount, SO-8 surface mount, and 8-pin DIP packages. In addition to the miniature SOT-23-8 surface-mount package, the OPA2337 is available in SO-8 surface-mount and 8-pin DIP packages. The OPA338 packages are the SOT-23-5 and SO-8 surface mounts. The OPA2338 packages are the SOT-23-8 and SO-8 surface mounts.

OPA337, OPA338

Out 1 5 V+

V- 2 + In 3 4 -In

NOTE: (1) DIP versions for OPA337, OPA2337 only.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85766 • Tel: (520) 746-1111

Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS: $V_S = 2.7V$ to 5.5V

At $T_A=+25^{\circ}C$, and $R_L=25k\Omega$ connected to $V_S/2$, unless otherwise noted. **Boldface** limits apply over the specified temperature range, $-40^{\circ}C$ to $+85^{\circ}C$, $V_S=5V$.

		OPA337NA, UA, PA OPA2337EA, UA, PA OPA338NA, UA OPA2338EA, UA			
PARAMETER	CONDITION	MIN	TYP ⁽¹⁾	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage V_{OS} $T_A = -40^{\circ}C$ to +85°C vs Temperature dV_{OS}/dT vs Power Supply Rejection Ratio V_{OS}/dT V_{OS			±0.5 ±2 25 0.3	±3 ± 3.5 125 125	mV mV μV/°C μV/V μV/V
INPUT BIAS CURRENT Input Bias Current $T_A = -40^{\circ}C$ to +85°C Input Offset Current I _O		5	±0.2 See Typical Cur ±0.2	±10 ve ±10	pA pA
NOISE Input Voltage Noise, f = 0.1Hz to 10Hz Input Voltage Noise Density, f = 1kHz e, Current Noise Density, f = 1kHz i,	l .		6 26 0.6		μVp-p nV/√Hz fA/√Hz
		-0.2 74 74	90	(V+) - 1.2	V dB dB
INPUT IMPEDANCE Differential Common-Mode			10 ¹³ 2 10 ¹³ 4		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	$\begin{aligned} R_{L} &= 25 k \Omega, \ 125 \text{mV} < V_{O} < (\text{V+}) - 125 \text{mV} \\ R_{L} &= 25 k \Omega, \ 125 \text{mV} < V_{O} < (\text{V+}) - 125 \text{mV} \\ R_{L} &= 5 k \Omega, \ 500 \text{mV} < V_{O} < (\text{V+}) - 500 \text{mV} \\ R_{L} &= 5 k \Omega, \ 500 \text{mV} < V_{O} < (\text{V+}) - 500 \text{mV} \end{aligned}$	100 100 100 100	120 114		dB dB dB dB
OPA337 FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.1% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise THD+N	$V_S = 5V, G = 1$ $V_S = 5V, G = 1$ $V_S = 5V, 2V Step, C_L = 100pF, G = 1$ $V_S = 5V, 2V Step, C_L = 100pF, G = 1$ $V_{IN} \bullet G = V_S$		3 1.2 2 2.5 2 0.001		MHz V/μs μs μs μs
OPA338 FREQUENCY RESPONSE Gain-Bandwidth Product GBW Slew Rate SF Settling Time: 0.1% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise THD+N	$V_S = 5V$, $G = 5$ $V_S = 5V$, $2V$ Step, $C_L = 100$ pF, $G = 5$ $V_S = 5V$, $2V$ Step, $C_L = 100$ pF, $G = 5$ $V_{IN} \bullet G = V_S$		12.5 4.6 1.4 1.9 0.5 0.0035		MHz V/μs μs μs μs
OUTPUT Voltage Output Swing from Rail ⁽²⁾ $T_A = -40^{\circ}C$ to +85°C $T_A = -40^{\circ}C$ to +85°C Short-Circuit Current			40 150 ±9	125 125 500 500	mV mV mV mV
Capacitive Load Drive C_{LOAI} POWER SUPPLY Specified Voltage Range V_{S} Minimum Operating Voltage Quiescent Current (per amplifier) I_{C} $I_{A} = -40^{\circ}C$ to $+85^{\circ}C$	T _A = -40°C to +85°C	2.7	See Typical Cur 2.5 0.525	5.5 1 1.2	V V mA mA

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS: $V_S = 2.7V$ to 5.5V (CONT)

At $T_A=+25^{\circ}C$, and $R_L=25k\Omega$ connected to $V_S/2$, unless otherwise noted. **Boldface** limits apply over the specified temperature range, $-40^{\circ}C$ to $+85^{\circ}C$, $V_S=5V$.

		OPA337NA, UA, PA OPA2337EA, UA, PA OPA338NA, UA OPA2338EA, UA			
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
		-40 -55 -55	200 200 150 100	+85 +125 +125	°C °C °C °C/W °C/W °C/W °C/W

NOTES: (1) V_S = 5V. (2) Output voltage swings are measured between the output and negative and positive power supply rails.

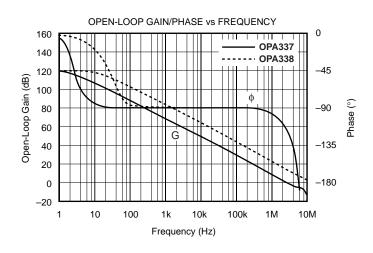
ABSOLUTE MAXIMUM RATINGS(1)

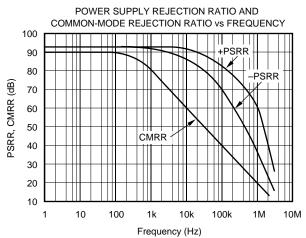
Supply Voltage	5.5V
Input Voltage ⁽²⁾	(V–) –0.5V to (V+) +0.5V
Input Current ⁽²⁾	
Output Short Circuit ⁽³⁾	
Operating Temperature	
Storage Temperature	
Junction Temperature	
Lead Temperature (soldering, 10s)	
1 (

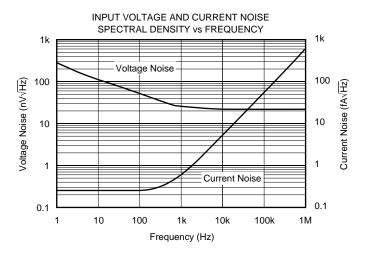
NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum ratings for extended periods may degrade device reliability. (2) Input signal voltage is limited by internal diodes connected to power supplies. See text. (3) Short circuit to ground, one amplifier per package.

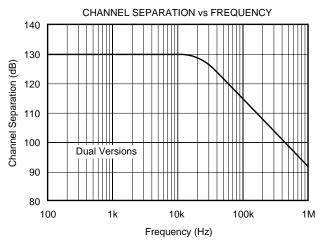
This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

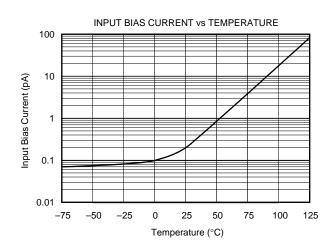
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

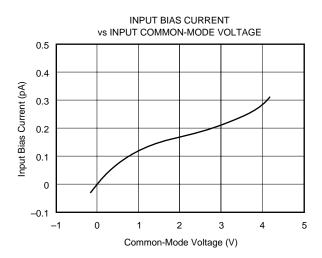

PACKAGE/ORDERING INFORMATION

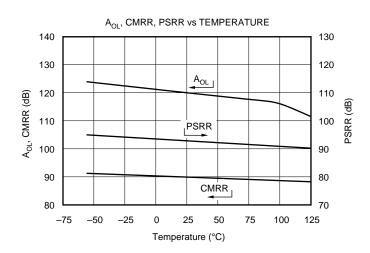

PRODUCT	DESCRIPTION	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ⁽²⁾	TRANSPORT MEDIA
OPA337 Series OPA337NA OPA337PA OPA337UA	Single, G = 1 Stable Single, G = 1 Stable Single, G = 1 Stable	5-Lead SOT-23-5 8-Pin DIP SO-8 Surface Mount	331 " 006 182	-40°C to +85°C -40°C to +85°C -40°C to +85°C	C37 " OPA337PA OPA337UA	OPA337NA/250 OPA337NA/3K OPA337PA OPA337UA OPA337UA/2K5	Tape and Reel Tape and Reel Rails Rails Tape and Reel
OPA2337EA OPA2337PA OPA2337UA	Dual, G = 1 Stable Dual, G = 1 Stable Dual, G = 1 Stable Dual, G = 1 Stable	8-Lead SOT-23-8 8-Pin DIP SO-8 Surface Mount	348 " 006 182	-40°C to +85°C -40°C to +85°C -40°C to +85°C	A7 " OPA2337PA OPA2337UA	OPA2337EA/250 OPA2337EA/3K OPA2337PA OPA2337UA OPA2337UA/2K5	Tape and Reel Tape and Reel Rails Rails Tape and Reel
OPA338 Series OPA338NA "OPA338UA	Single, $G \ge 5$ Stable Single, $G \ge 5$ Stable	5-Lead SOT-23-5 " SO-8 Surface Mount	331 " 182	-40°C to +85°C -40°C to +85°C	A38 " OPA338UA	OPA338NA/250 OPA338NA/3K OPA338UA OPA338UA/2K5	Tape and Reel Tape and Reel Rails Tape and Reel
OPA2338EA OPA2338UA	Dual, $G \ge 5$ Stable Dual, $G \ge 5$ Stable	8-Lead SOT-23-8 " SO-8 Surface Mount	348 " 182	-40°C to +85°C -40°C to +85°C	A8 " OPA2338UA	OPA2338EA/250 OPA2338EA/3K OPA2338UA OPA2338UA/2K5	Tape and Reel Tape and Reel Rails Tape and Reel

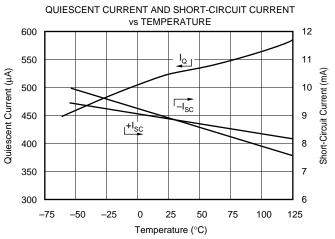

NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "OPA2337UA/2K5" will get a single 2500-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.

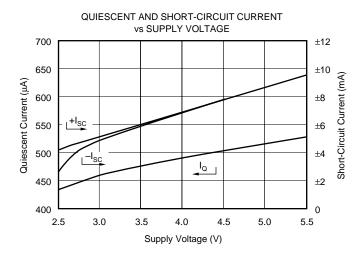

TYPICAL PERFORMANCE CURVES

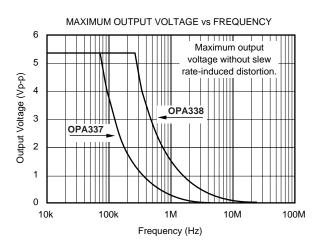

At T_A = +25°C, V_S = +5V, and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.

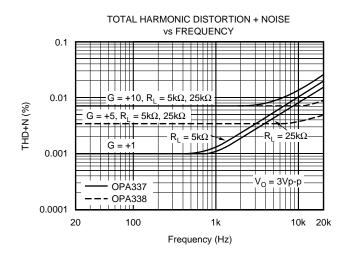


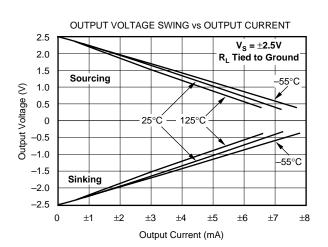


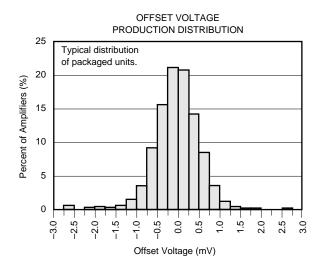


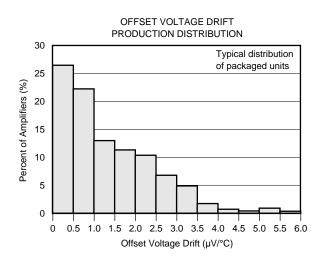


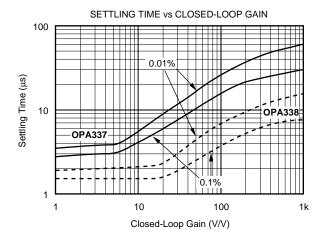

TYPICAL PERFORMANCE CURVES (CONT)

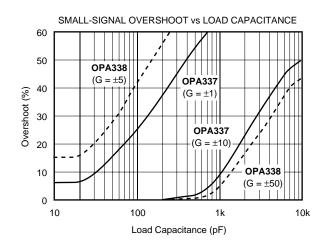

At T_A = +25°C, V_S = +5V, and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.

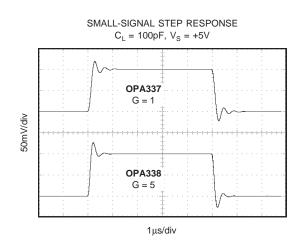


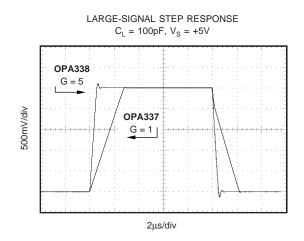







TYPICAL PERFORMANCE CURVES (CONT)


At T_A = +25°C, V_S = +5V, and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.



APPLICATIONS INFORMATION

The OPA337 series and OPA338 series are fabricated on a state-of-the-art CMOS process. The OPA337 series is unitygain stable. The OPA338 series is optimized for gains greater than or equal to five. Both are suitable for a wide range of general purpose applications. Power supply pins should be bypassed with 0.01µF ceramic capacitors.

OPERATING VOLTAGE

The OPA337 series and OPA338 series can operate from a +2.5V to +5.5V single supply with excellent performance. Unlike most op amps which are specified at only one supply voltage, these op amps are specified for real-world applications; a single limit applies throughout the +2.7V to +5.5V supply range. This allows a designer to have the same assured performance at any supply voltage within the specified voltage range. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage are shown in typical performance curves.

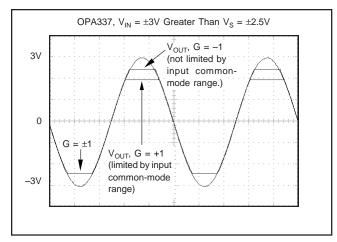


FIGURE 1. OPA337—No Phase Inversion with Inputs Greater than the Power Supply Voltage.

INPUT VOLTAGE

The input common-mode range extends from (V-) - 0.2V to (V+) - 1.2V. For normal operation, inputs should be limited to this range. The absolute maximum input voltage is 500 mV beyond the supplies. Inputs greater than the input common-mode range but less than maximum input voltage, while not valid, will not cause any damage to the op amp. Furthermore, if input current is limited the inputs may go beyond the power supplies without phase inversion (Figure 1) unlike some other op amps.

Normally, input currents are 0.2pA. However, large inputs (greater than 500mV beyond the supply rails) can cause excessive current to flow in or out of the input pins. Therefore, as well as keeping the input voltage below the maximum rating, it is also important to limit the input current to less than 10mA. This is easily accomplished with an input resistor as shown in Figure 2.

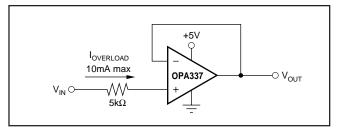


FIGURE 2. Input Current Protection for Voltages Exceeding the Supply Voltage.

USING THE OPA338 IN LOW GAINS

The OPA338 series is optimized for gains greater than or equal to five. It has significantly wider bandwidth (12.5MHz) and faster slew rate (4.6V/ μ s) when compared to the OPA337 series. The OPA338 series can be used in lower gain configurations at low frequencies while maintaining its high slew rate with the proper compensation.

Figure 3 shows the OPA338 in a unity-gain buffer configuration. At dc, the compensation capacitor C_1 is effectively "open" resulting in 100% feedback (closed-loop gain = 1). As frequency increases, C_1 becomes lower impedance and closed-loop gain increases, eventually becoming $1 + R_2/R_1$ (in this case five, which is equal to the minimum gain required for stability).

The required compensation capacitor value can be determined from the following equation:

$$C_1 = 1/(2\pi f_C R_1)$$

Since f_C may shift with process variations, it is recommended that a value less than f_C be used for determining C_1 . With $f_C=1 MHz$ and $R_1=2.5k\Omega$, the compensation capacitor is about 68pF.

The selection of the compensation capacitor C_1 is important. A proper value ensures that the closed-loop circuit gain is greater than or equal to five at high frequencies. Referring to the "Open-Loop Gain vs Frequency" plot in the Typical Performance Curves section, the OPA338 gain line (dashed in the curve) has a constant slope (–20dB/decade) up to approximately 3MHz. This frequency is referred to as f_C . Beyond f_C the slope of the curve increases, suggesting that closed-loop gains less than 5 are not appropriate.

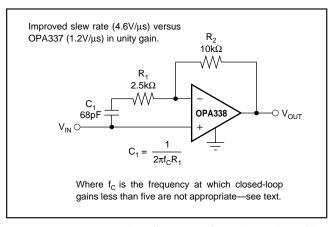


FIGURE 3. Compensation of OPA338 for Unity-Gain Buffer.

Figure 4 shows a compensation technique using an inverting configuration. The low frequency gain is set by the resistor ratio while the high frequency gain is set by the capacitor ratio. As with the noninverting circuit, for frequencies above f_C the gain must be greater than the recommended minimum stable gain for the op amp.

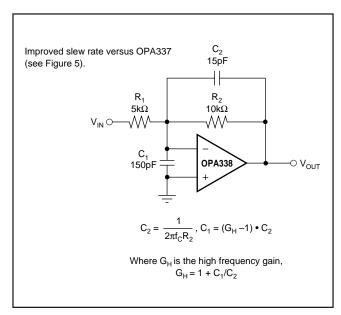


FIGURE 4. Inverting Compensation Circuit of OPA338 for Low Gain.

Resistors R_1 and R_2 are chosen to set the desired dc signal gain. Then the value for C_2 is determined as follows:

$$C_2 = 1/(2\pi f_C R_2)$$

 C_1 is determined from the desired high frequency gain (G_H) :

$$C_1 = (G_H - 1) \bullet C_2$$

For a desired dc gain of 2 and high frequency gain of 10, the following resistor and capacitor values result:

$$R_1 = 10k\Omega$$
 $C_1 = 150pF$
 $R_2 = 5k\Omega$ $C_2 = 15pF$

The capacitor values shown are the nearest standard values. Capacitor values may need to be adjusted slightly to optimize performance. For more detailed information, consult the OPA686 product data sheet.

Figure 5 shows the large-signal transient response using the circuit given in Figure 4. As shown, the OPA338 is stable in low gain applications and provides improved slew rate performance when compared to the OPA337.

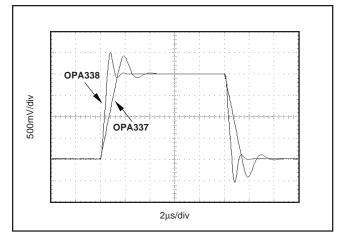


FIGURE 5. G = 2, Slew-Rate Comparison of OPA338 and OPA337.

TYPICAL APPLICATION

Figure 6 shows the OPA2337 in a typical application. The ADS7822 is a 12-bit, micro-power sampling analog-to-digital converter available in the tiny MSOP-8 package. As with the OPA2337, it operates with a supply voltage as low as +2.7V. When used with the miniature SOT-23-8 package of the OPA2337, the circuit is ideal for space-limited and low power applications. In addition, OPA2337's high input impedance allows large value resistors to be used which results in small physical capacitors, further reducing circuit size. For further information, consult the ADS7822 product data sheet.

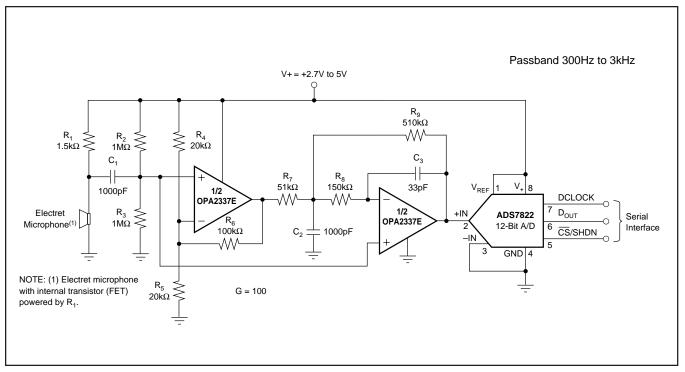


FIGURE 6. Low Power, Single-Supply, Speech Bandpass Filtered Data Acquisition System.

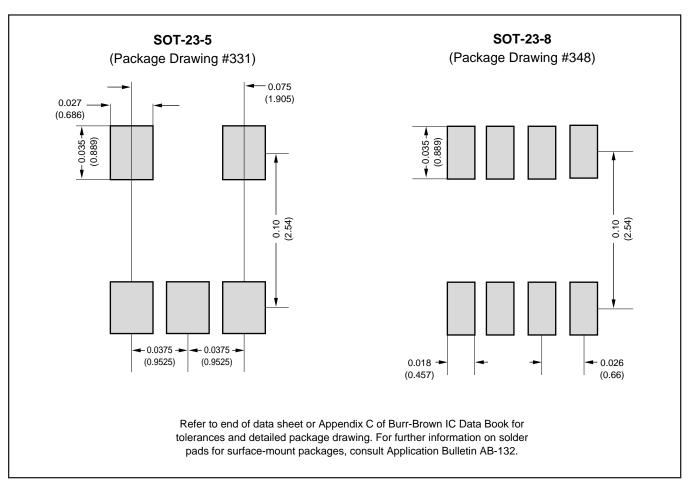


FIGURE 7. Recommended SOT-23-5 and SOT-23-8 Solder Footprints.

Find price and stock options from leading distributors for OPA2337PA on Findchips.com:

https://findchips.com/search/OPA2337PA

Find CAD models and details for this part:

https://findchips.com/detail/opa2337pa/Burr--Brown-Corp