TYPE TIS43 P-N PLANAR SILICON UNIJUNCTION TRANSISTOR

BULLETIN NO. DL-S 6810706, FEBRUARY 1968

PLANAR UNIJUNCTION <u>SILECT</u>[†] TRANSISTOR[‡]
FOR APPLICATION IN SCR DRIVERS, MOTOR-SPEED CONTROLS,
TIMERS, WAVEFORM GENERATORS, MULTIVIBRATORS, RING COUNTERS,
ELECTRONIC ORGANS AND MILITARY FUZES

- Low Leakage Allows More Accurate Timing Circuit Design
- Provides Wider Range of Design Applications than Bar-Type Unit unction Transistors
- 2N4891 is Recommended for New Designs

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Emitter-Base-Two Reverse Voltage	e .																				-3	0 V
Interbase Voltage																						
Continuous Emitter Current																						
Peak Emitter Current (See Note 2)).																					1 A
Continuous Device Dissipation at																						
Continuous Device Dissipation at	or)	belo	ow)	2	5°C	Le	ad	Te	mp	era	ture	e (S	iee	No	ote	4)					500 :	mW
Storage Temperature Range																		-1	65°	C t	o 150)°C
Lead Temperature 1/6 Inch from Co	ase	for	10	Se	cond	ds															260)°C

NOTES: 1. Interbase voltage is limited solely by power dissipation, $V_{B2-81} = \sqrt{r_{B8} * P_T}$. The r_{B8} range specified gives maximum values ranging from 35 V to 52 V.

- 2. This value applies for a capacitor discharge through the emitter—base-one diode. Current must fall to 0.37 A within 3 ms and pulse-repetition rate must not exceed 10 pps.
- 3, Derate linearly to 150°C free-air temperature at the rate of 2.88 mW/deg.
- 4. Berate linearly to 150°C lead temperature at the rate of 4 mW/deg. Lead temperature is measured on the base-two lead 1/16 inch from the case.

†Trademark of Texas Instruments

‡U. S. Patent No. 3,439,238

USES CHIP U42

TYPE TIS43 P-N PLANAR SILICON UNIJUNCTION TRANSISTOR

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
r _{BB}	Static Interbase Resistance	$V_{82-81} = 3 V, I_E = 0$	4	9.1	kΩ
$\alpha_{\sf rBB}$	Interbase Resistance Temperature Coefficient	$V_{B2-B1} = 3 \text{ V}, I_E = 0, T_A = -65^{\circ}\text{C to } 100^{\circ}\text{C},$ See Note 5	0.1	0.9	%/deg
η	Intrinsic Standoff Ratio	V _{B2-B1} = 10 V, See Figure 1	0.55	0.82	
{82(mod)}	Modulated Interbase Current	$V{B2-B1} = 10 \text{ V}, l_E = 50 \text{ mA}$	10		mÅ
I _{EB2} O	Emitter Reverse Current	$V_{B2-E} = 30 \text{ V}, I_{B1} = 0$		-10	nA
l _P	Peak-Point Emitter Current	$V_{g_2-B_1} = 25 \text{ V}$		5	μA
V _{EB1[sat]}	Emitter Base-One Saturation Voltage	$V_{B2-B1} = 10 \text{ V, I}_{E} = 50 \text{ mA, See Note } 6$		4	V
Ιν	Valley-Point Emitter Current	V _{B2-B1} == 20 V	2		mA
V _{OB1}	Base-One Peak Pulse Voltage	See Figure 2	3		٧

NOTES: 5. Temperature coefficient, $\alpha_{\rm cBB}$, is determined by the following formula

$$\alpha_{rBB} = \begin{bmatrix} (r_{BB} @ 100^{\circ}C) - (r_{BB} @ -55^{\circ}C) \\ \hline (r_{BB} @ 25^{\circ}C) \end{bmatrix} \frac{100\%}{155 \text{ deg}}$$

$$r_{BB[2]} = [r_{BB} @ 25^{\circ}C] \{1 + (\alpha_{rBB}/100) (T_{A[2]} -25^{\circ}C) \}$$

To obtain rem for a given temperature Tatas, use the following formula:

6 This parameter is measured using pulse techniques, $t_{
m p}=300~\mu{
m s}$, duty cycle $\leq 2\%$

PARAMETER MEASUREMENT INFORMATION

 $\eta =$ Intrinsic Standoff Ratio - This parameter is defined in terms of the peak point voltage V_p , by means of the equation $V_p = \eta$ Verm - VE, where VE is about 0.56 volt at 25°C and decreases with temperature at about 2 millivolts/deg.

The circuit used to measure η is shown in the figure. In this circuit, R1, C and the uniquiction transistor form a relaxation oscillator, and the remainder of the circuit serves as a peak-voltage detector with the diade \mathbf{D}_1 automatically subtracting the voltage V_F To use the circuit, the call button is pushed and R₃ is adjusted to make the current meter M, read full scale. The calbutton then is released and the value of η is read directly from the meter, with 71 1 corresponding to full scale deflection of 100 μA.

D₁ 1N457, or equivalent, with the following characteristics.

 $V_{\rm p}=0.565$ V at $I_{\rm p}=50~\mu{\rm A}$,

I $_{\rm R}$ \leq 2 $\mu{\rm A}$ at V $_{\rm R}$ = 20 Y

FIGURE 1 — TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (n)

TEXAS INSTRUMENTS

FIGURE 3 - GENERAL STATIC EMITTER CHARACTERISTIC CURVE

373