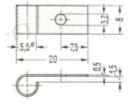
Germanium NPN Transistor AC176

32V / 1A

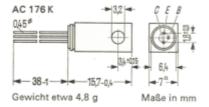
DATASHEET

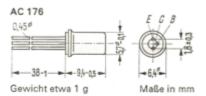
OEM - Siemens

Source: Siemens Databook 1970/71


AC176, AC176K kompl. gepaart AC176/AC153 NPN/PNP

NPN-Transistor für NF-Endstufen bis 3,5 W


AC 176 ist ein legierter NPN-Germanium-Transistor im Gehäuse 1 A 3 DIN 41871 (TO-1 ähnlich). Die Anschlüsse sind vom Gehäuse elektrisch isoliert. Der Kollektoranschluß wird mit einem roten Punkt am Gehäuserand gekennzeichnet.


Zur Befestigung auf einem Chassis ist ein Befestigungsteil (Kühlschelle¹) vorgesehen, dieses ist zusätzlich zu bestellen. Der Transistor AC 176 K hat ein Vierkantgehäuse und kann direkt mit gutem Wärmekontakt auf das Chassis montiert werden. Der Kollektoranschluß des AC 176 K ist durch eine kleine Vertiefung im Kühlblock gekennzeichnet. AC 176 und AC 176 K, zur Verwendung in NF-Endstufen bis 3,5 W, sind zusammen mit AC 153/153 K auch als komplementäre Paare lieferbar.

Тур	Bestellnummer
AC 176	Q60103-X176
AC 176 kompl. gep.	Q60103-X176-S5
AC 176 K	Q60103-X176-K
AC 176 K kompl. gep.	Q60103-X176-S3
Kühlschelle	Q62901-B1

Befestigungsteil (Kühlschelle) 1)

Grenzdaten

Kollektor-Emitter-Spannung	U_{CEO}	18	V
Kollektor-Basis-Spannung	U_{CBO}	32	V
Emitter-Basis-Spannung	U_{EBO}	10	V
Kollektorstrom	I_{C}	1	Α
Basisstrom	I_{B}	0,1	Α
Sperrschichttemperatur	$T_{\rm j}$	90	°C
Lagertemperatur	T's	-55 bis +75	°C
Gesamtverlustleistung	P_{tot}	1,0	W
Wärmewiderstand			
Kollektorsperrschicht - Luft (AC 176)	RthJU	≤ 300	grd/W
Kollektorsperrschicht - Transistorgehäuse			5.071
(AC 176)	$R_{\rm thJG}$	≤ 40	grd/W
Kollektorsperrschicht – Kühlblech unter der			8.0711
Befestigungsschraube; bei sorgfältiger			
Montage (AC 176 K)	$R_{\rm thL}$	≤ 45	grd/W
	E III L		0/**

Bei sorgfältiger Montage Wärmewiderstand zwischen Transistorgehäuse und Kühlblech unter der Befestigungsschraube R_{th} ≤ 10 grd/W

AC176, AC176 K kompl. gepaart AC176/AC153 NPN/PNP

Statische Kenndaten (T_U = 25 °C)

Für folgende Arbeitspunkte gilt:

U _{CB}	I _C mA	I_{B} mA	$B I_{\mathrm{C}}/I_{\mathrm{B}}$	U _{BE} V
0,	50	1,4	35	< 0,3
0	300	2,7 (1,2 bis 6)	110 (50 bis 250)	< 0,65
0	1000	33,3	30	< 1

Kollektor-Emitter-Sättigungsspannung ($I_{\rm C}=1~{\rm A}$ für die Kennlinie, die bei konstantem Basisstrom durch den Kennlinienpunkt $I_{\rm C}=1,1~{\rm A};~U_{\rm CE}=1~{\rm V}$ geht) $U_{\rm CE\,sat}~|~<0,6~$ | V

90 °C Kollektor-Emitter-Reststrom $(U_{CEV} = 32 \text{ V}; -U_{BE} = 0.6 \text{ V})$ 1 (< 3)mΑ Kollektor-Basis-Reststrom $(U_{CBO} = 10 \text{ V})$ 7 (< 35) I_{CBO} μΑ Kollektor-Basis-Reststrom $(U_{CBO} = 32 \text{ V})$ 1000 (< 3000) 25 (< 500) I_{CBO} μΑ Emitter-Basis-Reststrom $(U_{\rm EBO} = 10 \text{ V})$ I_{EBO} 20 (< 200)

Kollektor-Emitter-Durchbruchspannung ($I_{\text{CEO}} = 300 \text{ mA}$) $U_{(\text{BR})\text{CEO}}$ > 18 V Kollektor-Basis-Durchbruchspannung ($I_{\text{CBO}} = 500 \, \mu\text{A}$) $U_{(\text{BR})\text{CBO}}$ > 32 V Emitter-Basis-Durchbruchspannung ($I_{\text{CBO}} = 200 \, \mu\text{A}$) $U_{(\text{BR})\text{EBO}}$ > 10 V

Dynamische Kenndaten (T_U = 25 °C)