Plastic Medium-Power Silicon NPN Darlingtons ... for use as output devices in complementary general-purpose amplifier applications. - High DC Current Gain — hFE = 750 (Min) @ IC = 1.5 and 2.0 Adc - · Monolithic Construction - BD675, 675A, 677, 677A, 679, 679A, 681 are complementary with BD676, 676A, 678, 678A, 680, 680A, 682 - BD 677, 677A, 679, 679A are equivalent to MJE 800, 801, 802, 803 #### **MAXIMUM RATINGS** | Rating | Symbol | BD675
BD675A | BD677
BD677A | BD679
BD679A | BD681 | Unit | |---|-----------------------------------|-----------------|-----------------|-----------------|---------------|------| | Collector–Emitter Voltage | VCEO | 45 | 60 | 80 | 100 | Vdc | | Collector-Base Voltage | V _{CB} | 45 | 60 | 80 | 100 | Vdc | | Emitter-Base Voltage | V _{EB} | 5.0 | | | | Vdc | | Collector Current | IC | 4.0 | | | | Adc | | Base Current | IB | 0.1 | | | Adc | | | Total Device Dissipation
@T _C = 25°C
Derate above 25°C | PD | 40
0.32 | | | Watts
W/°C | | | Operating and Storage Junction
Temperating Range | T _J , T _{stg} | -55 to +150 | | | °C | | ### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--------------------------------------|-----------------|------|------| | Thermal Resistance, Junction to Case | 0 _{JC} | 3.13 | °C/W | Figure 1. Power Temperature Derating Preferred devices are Motorola recommended choices for future use and best overall value. #### REV 7 BD675 BD675A BD677 BD677A BD679 BD679A BD681* *Motorola Preferred Device 4.0 AMPERE DARLINGTON POWER TRANSISTORS NPN SILICON 60, 80, 100 VOLTS 40 WATTS #### BD675 BD675A BD677 BD677A BD679 BD679A BD681 ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |---|--|----------------------|-----------------------|------------|--------------| | OFF CHARACTERISTICS | | | | | | | Collector–Emitter Breakdown Voltage ⁽¹⁾ (I _C = 50 mAdc, I _B = 0) | BD675, 675A
BD677, 677A
BD679, 679A
BD681 | BVCEO | 45
60
80
100 | | Vdc | | Collector Cutoff Current (V _{CE} = Half Rated V _{CEO} , I _B = 0) | | ^I CE0 | = | 500 | µ Adc | | Collector Cutoff Current (VCB = Rated BVCEO, IE = 0) (VCB = Rated BVCEO, IE = 0, TC = 100'C) | | I _{CBO} | - <u></u> - | 0.2
2.0 | mAdc | | Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0) | | I _{EBO} | 35 <u>—5</u> 4 | 2.0 | mAdc | | ON CHARACTERISTICS | | | 2 3 | <u></u> | (C) | | DC Currert Gain(1)
(I _C = 1.5 Adc, V _{CE} = 3.0 Vdc)
(I _C = 2.0 Adc, V _{CE} = 3.0 Vdc) | BD675, 677, 679, 681
BD675A, 677A, 679A | hFE | 750
750 | | _ | | Collector–Emitter Saturation Voltage(1) (I _C = 1.5 Adc, I _B = 30 mAdc) (I _C = 2.0 Adc, I _B = 40 mAdc) | BD677, 679, 681
BD675A, 677A, 679A | V _{CE(sat)} | _ | 2.5
2.8 | Vdc | | Base–Emitter On Voltage(1)
(I _C = 1.5 Adc, V _{CE} = 3.0 Vdc)
(I _C = 2.0 Adc, V _{CE} = 3.0 Vdc) | BD677, 679, 681
BD675A, 677A, 679A | VBE(on) | = | 2.5
2.5 | Vdc | | OYNAMIC CHARACTERISTICS | | · | | | | | Small Signal Current Gain (I _C = 1.5 Adc, V _{CF} = 3.0 Vdc, f = 1.0 MHz) | | hfe | 1.0 | | | ⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%. There are two limitations on the power handling ability of a transistor average junction temperature and secondary breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; e.g., the transistor must not be subjected to greater dissipation than the curves indicate. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown. Figure 2. DC Safe Operating Area Figure 3. Darlington Circuit Schematic # BD675 BD675A BD677 BD677A BD679 BD679A BD681 # PACKAGE DIMENSIONS #### BD675 BD675A BD677 BD677A BD679 BD679A BD681 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. ## How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315 MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298