Dimensions in mm

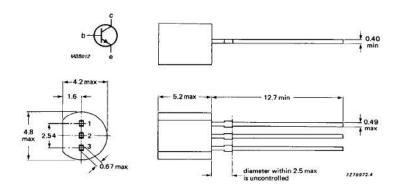
SILICON PLANAR TRANSISTOR

N-P-N transistor in a plastic TO-92 envelope. The BF198 has a very low feedback capacitance and is intended for use in the forward gain control stage of the television i.f. amplifier.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	40	٧
Collector-emitter voltage (open base)	V _{CEO}	max.	30	V
Collector current (d.c.)	lc	max.	25	mΑ
Total power dissipation up to Tamb = 25 °C	P _{tot}	max.	500	mW
Junction temperature	Τ _j	max.	150	oC
Transition frequency at f = 100 MHz I _C = 4 mA; V _{CE} = 10 V	fT	typ.	400	MHz
Feedback capacitance at f = 10,7 MHz $I_C = 1 \text{ mA}$; $V_{CE} = 10 \text{ V}$	-C _{re}	typ.	200	fF

MECHANICAL DATA


Fig. 1 TO-92.

Pinning

1 = base

2 = emitter

3 = collector

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	v_{CBO}	max.	40	v
Collector-emitter voltage (open base)	v_{CEO}	max.	30	\cdot \mathbf{v}
Emitter-base voltage (open collector)	v_{EBO}	max.	4	V
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	25	mA
Collector current (peak value)	I_{CM}	max.	25	mA
Total power dissipation up to $T_{amb} = 25$ ^{o}C	P _{tot}	max.	500	mW
Storage temperature range	T_{stg}	-65 to +150		°C
Junction temperature	T_j	max.	150	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0,25	K/mW

CHARACTERISTICS

Tamb = 25 °C unless otherwise specified

Base current at about 50 dB gain control

$$I_{C} = 6 \text{ mA}; V_{CE} = 2 \text{ V}$$
 $I_{B} < 270 \text{ } \mu\text{A}$ $I_{C} = 15 \text{ mA}; V_{CE} = 5 \text{ V}$ $I_{B} < 1.5 \text{ } m\text{A}$

Base current

$$I_C = 4 \text{ mA}$$
; $V_{CE} = 10 \text{ V}$ $I_B < 0.00 \text{ mA}$

Base-emitter voltage 1)

$$I_C = 4 \text{ mA}$$
; $V_{CE} = 10 \text{ V}$ V_{BE} $\stackrel{\text{typ.}}{<}$ $\stackrel{760}{=}$ $\stackrel{\text{mV}}{=}$ $\stackrel{\text{mV}}{=}$

Feedback capacitance at f = 10.7 MHz

$$I_C = 1 \text{ mA}$$
; $V_{CE} = 10 \text{ V}$ $-C_{re}$ typ. 200 fF

Transition frequency at f = 100 MHz

$$I_C = 4 \text{ mA}$$
; $V_{CE} = 10 \text{ V}$ f_T typ. 400 MHz

¹⁾ VBE decreases by about 1,7 mV/K with increasing temperature.